Finding best possible constant for a polynomial inequality
نویسندگان
چکیده
Given a multi-variant polynomial inequality with a parameter, how to find the best possible value of this parameter that satisfies the inequality? For instance, find the greatest number k that satisfies a+b+c+k(ab+bc+ca)−(k+1)(ab+bc+ca) ≥ 0 for all nonnegative real numbers a, b, c. Analogues problems often appeared in studies of inequalities and were dealt with by various methods. In this paper, a general algorithm is proposed for finding the required best possible constant. The algorithm can be easily implemented by computer algebra tools such as Maple.
منابع مشابه
A more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function
By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...
متن کاملA multidimensional discrete Hilbert-type inequality
In this paper, by using the way of weight coecients and technique of real analysis, a multidimensionaldiscrete Hilbert-type inequality with a best possible constant factor is given. The equivalentform, the operator expression with the norm are considered.
متن کاملAn extended multidimensional Hardy-Hilbert-type inequality with a general homogeneous kernel
In this paper, by the use of the weight coefficients, the transfer formula and the technique of real analysis, an extended multidimensional Hardy-Hilbert-type inequality with a general homogeneous kernel and a best possible constant factor is given. Moreover, the equivalent forms, the operator expressions and a few examples are considered.
متن کاملOn a Hardy-Hilbert-Type Inequality with a General Homogeneous Kernel
By the method of weight coefficients and techniques of real analysis, a Hardy-Hilbert-type inequality with a general homogeneous kernel and a best possible constant factor is given. The equivalent forms, the operator expressions with the norm, the reverses and some particular examples are also considered.
متن کاملA new restructured Hardy-Littlewood's inequality
In this paper, we reconstruct the Hardy-Littlewood’s inequality byusing the method of the weight coefficient and the technic of real analysis includinga best constant factor. An open problem is raised.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1603.01338 شماره
صفحات -
تاریخ انتشار 2016